# Effects of Vitamin D Supplementation on 25-Hydroxyvitamin D and Markers of Cardiovascular Disease Risk in Subjects with High Waist Circumferences

Parameter<sup>1</sup>

Kevin C. Maki, PhD¹; Martyn R. Rubin, PhD¹; Les G. Wong, BS²; Jamie F. McManus, MD²; Christopher D. Jensen, PhD³; Andrea Lawless, MD¹ ¹Provident Clinical Research; Glen Ellyn, IL and Addison, IL; ²Shaklee Corporation; Pleasanton, CA; ³Kaiser Permanente, Division of Research; Oakland, CA

# **Background**

- Observational studies have shown an inverse relationship between circulating 25-hydroxy-vitamin D [25(OH)D] concentration and the incidence of cardiovascular disease.
- We recently reported a strong positive relationship between serum 25(OH)D and high-density lipoprotein cholesterol (HDL-C) concentrations.

# **Objective**

The objective of this trial was to assess the effects of a multivitamin and mineral (MVM) supplement, with and without vitamin D (cholecalciferol), on serum 25(OH)D, HDL-C, and other cardiovascular disease risk markers in subjects with waist circumference ≥88 cm (women) or ≥102 cm (men). An extension study examined effects of incorporating low doses of omega-3 fatty acids and probiotics into the supplement.

# **Subjects**

- Men and women 18-79 years of age, each with waist circumference ≥88 cm (women) or ≥102 cm (men).
- Participants agreed to avoid sunbathing and use of tanning beds throughout the study period.
- The 8 week trial was initiated in the summer months with the 8 week extension period ending in the fall.
- Participants refrained from supplemental vitamin D intake in functional foods or dietary supplements other than multivitamin supplements with no more than 200 IU of vitamin D.
- Exclusion criteria included coronary heart disease (CHD) or a CHD risk equivalent; abnormal laboratory test results of clinical significance; poorly controlled hypertension (≥160 mm Hg systolic or ≥100 mm Hg diastolic blood pressure); use of any medications, functional foods or dietary supplements known to alter lipid metabolism.

## **Methods**

- Subjects were randomly assigned to receive a daily dose of either a MVM supplement (control) or a MVM supplement containing 1200 IU of vitamin D (MVM + D) for 8 weeks.
- Following the 8 week trial, the MVM + D group participated in an open-label extension period for an additional eight weeks during which bifidobacterium longum and lactobacillus acidophilus (500 million colony forming units/d total), eicosapentaenoic acid (280 mg/d), and docosahexaenoic acid (180 mg/d) were added to the supplement.
- Plasma 25(OH)D, serum lipids, and serum hs-CRP were assessed at baseline and the end of both the double-blind treatment period and the extension period.
- Analyses of covariance models were used to compare changes or percent changes from baseline to end-of-treatment for the double-blind treatment period.
- Analysis of variance models were used to compare baseline, end of double-blind treatment and end of extension period values. Pairwise comparisons were obtained using t-tests with Sidak corrections for multiple comparisons.

## **Results**

#### Table 1. Subject characteristics for the double-blind treatment period.

| Characteristic <sup>1</sup>        | MVM (n = 29)<br>n (%) |         | MVM + D (n = 31)<br>n (%) |         |
|------------------------------------|-----------------------|---------|---------------------------|---------|
|                                    |                       |         |                           |         |
| Gender                             |                       |         |                           |         |
| Male                               | 7                     | (24.1%) | 8                         | (25.8%) |
| Female                             | 22                    | (75.9%) | 23                        | (74.2%) |
| Race/Ethnicity                     |                       |         |                           |         |
| Non-Hispanic White                 | 27                    | (93.1%) | 30                        | (96.8%) |
| All Other                          | 2                     | (6.9%)  | 1                         | (3.2%)  |
| Smoking Status                     |                       |         |                           |         |
| Non-Smoker                         | 14                    | (48.3%) | 15                        | (48.4%) |
| Current Smoker                     | 15                    | (51.7%) | 16                        | (51.6%) |
|                                    |                       | Me      | an (SEM)                  |         |
| Age, years                         | 54.3 (2.0)            |         | 50.3 (2.5)                |         |
| Body Mass Index, kg/m <sup>2</sup> | 31.                   | 7 (1.0) | 31.                       | 7 (1.1) |
| Waist Circumference, cm            | 103.                  | 8 (2.1) | 105.                      | 7 (2.2) |

<sup>&</sup>lt;sup>1</sup>There were no significant differences between groups. All P-values were >0.20.

# Table 2. Indicators of cardiovascular disease risk for the double-blind treatment period.

| Parameter <sup>1</sup>                     | MVM   | (n = 29)                    | MVM + 1 | D (n = 31)     | P-value |  |  |
|--------------------------------------------|-------|-----------------------------|---------|----------------|---------|--|--|
| Mean (SEM) or                              |       |                             |         |                |         |  |  |
| Median (Interquartile Limits) <sup>2</sup> |       |                             |         |                |         |  |  |
| 25-Hydroxyvitamin D                        | _     |                             |         | 4              |         |  |  |
| Baseline                                   |       | (1.5)                       |         | (1.5)          | 0.508   |  |  |
| Change                                     |       | (1.0)                       | 4.7     | (1.2)          | 0.003   |  |  |
| Total Cholesterol, mg/                     |       |                             |         |                |         |  |  |
| Baseline                                   | 213.9 |                             | 202.2   |                | 0.220   |  |  |
| % Change                                   | -0.6  | (1.9)                       | 1.6     | (1.5)          | 0.359   |  |  |
| LDL-C, mg/dL                               |       |                             |         |                |         |  |  |
| Baseline                                   | 137.0 | (5.1)                       | 131.7   | (6.0)          | 0.505   |  |  |
| % Change                                   | 0.1   | (2.6)                       | 1.4     | (1.9)          | 0.836   |  |  |
| HDL-C, mg/dL                               |       |                             |         |                |         |  |  |
| Baseline                                   | 46.2  | (1.9)                       | 45.6    | (2.4)          | 0.831   |  |  |
| % Change                                   | 1.7   | (1.4)                       | 2.8     | (2.0)          | 0.653   |  |  |
| Non-HDL-C, mg/dL                           |       |                             |         |                |         |  |  |
| Baseline                                   | 167.5 | (148.5, 186.0)              | 153.5   | (126.5, 192.0) | 0.237   |  |  |
| % Change                                   |       | (-6.2, 5.5)                 |         | (-3.6, 4.3)    | 0.650   |  |  |
| TC/HDL-C Ratio                             |       | , , ,                       |         | , , ,          |         |  |  |
| Baseline                                   | 4.73  | (3.83, 5.63)                | 4.36    | (3.69, 5.58)   | 0.433   |  |  |
| % Change                                   |       | (-4.40, 2.51)               |         | (-7.42, 5.60)  | 0.601   |  |  |
| Triglycerides, mg/dL                       |       | , , , , ,                   |         |                |         |  |  |
| Baseline                                   | 149.0 | (95.0, 200.0)               | 88.5    | (72.0, 163.0)  | 0.044   |  |  |
| % Change                                   |       | (-20.7, 1.8)                |         | (-23.3, 18.6)  | 0.138   |  |  |
| hs-CRP, mg/dL                              | 0.0   | ( 2011, 110)                | 0.1     | (23.3, 13.0)   | 0.130   |  |  |
| Baseline                                   | 1 0   | (0.9, 4.1)                  | 2.4     | (0.9, 4.4)     | 0.731   |  |  |
| Change                                     |       | (-0.5, 0.6)                 |         | (-1.1, 1.4)    | 0.731   |  |  |
| O                                          | 0.1   | (-0.5, 0.0)                 | 0.0     | (-1.1, 1.7)    | 0.700   |  |  |
| Body Weight, kg Baseline                   | 05 1  | (70 1 05 7)                 | 00.7    | (77.1, 98.2)   | 0.496   |  |  |
| Change                                     |       | (78.1, 95.7)<br>(-1.0, 0.3) |         | (-0.4, 1.2)    | 0.490   |  |  |
| e e                                        |       | (-1.0, 0.3)                 | 0.0     | (-0.4, 1.2)    | 0.009   |  |  |
| Systolic Blood Pressur                     |       | (1.0)                       | 1150    | (1.0)          | 0.000   |  |  |
| Baseline                                   | 120.3 | ` '                         | 115.8   | , ,            | 0.090   |  |  |
| Change                                     |       | (1.3)                       | -0.5    | (1.1)          | 0.294   |  |  |
| Diastolic Blood Pressu                     |       | (4.5)                       |         | (4.4)          | 2 22=   |  |  |
| Baseline                                   |       | (1.5)                       |         | (1.4)          | 0.227   |  |  |
| Change                                     | -1.8  | (0.9)                       | 0.1     | (0.8)          | 0.244   |  |  |
| Heart Rate, bpm                            |       |                             |         |                |         |  |  |
| Baseline                                   |       | (60.0, 75.0)                |         | (62.7, 74.2)   | 0.276   |  |  |
| Change                                     | 3.1   | (0.2, 4.3)                  | 1.9     | (-1.5, 3.3)    | 0.481   |  |  |

<sup>&</sup>lt;sup>1</sup> Baseline was defined as average of visits 1 and 2 (weeks –1 and 0) and end of treatment was defined as average of visits 3 and 4 (weeks –7 and 8)

**Table 3. Indicators of cardiovascular disease risk for the extension period.** 

MVM + D Extension

n = 27

|                                        | n = 27                                    |               |       |
|----------------------------------------|-------------------------------------------|---------------|-------|
|                                        | Mean (SEM) or Median P-value <sup>2</sup> |               |       |
|                                        | (Interquar                                | tile Limits)3 |       |
| 25-Hydroxyvitamin D, ng/mL             |                                           |               |       |
| Baseline                               | 25.6                                      | (1.6)         |       |
| Change at End of Treatment             | 5.0                                       | (1.3)         | 0.002 |
| Change at End of Extension             | 2.9                                       | (1.4)         | 0.095 |
| Total Cholesterol, mg/dL               |                                           |               |       |
| Baseline                               | 203.6                                     | (8.4)         |       |
| % Change at End of Treatment           |                                           | (1.4)         | 0.800 |
| % Change at End of Extension           |                                           | (1.2)         | 0.048 |
| LDL-C, mg/dL                           |                                           | ,             | •     |
| Baseline                               | 131.4                                     | (6.7)         |       |
| % Change at End of Treatment           |                                           | (1.9)         | 0.800 |
| % Change at End of Extension           |                                           | (2.0)         | 0.072 |
|                                        | -1.5                                      | (2.0)         | 0.072 |
| HDL-C, mg/dL                           | 467                                       | (2.6)         |       |
| Baseline Classification F. 1. (T. 1. ) |                                           | (2.6)         | 0.620 |
| % Change at End of Treatment           |                                           | (2.1)         | 0.638 |
| % Change at End of Extension           | 1.2                                       | (2.3)         | 0.008 |
| Non-HDL-C, mg/dL                       | 17.0                                      | (2.4)         |       |
| Baseline                               | 156.9                                     |               |       |
| % Change at End of Treatment           |                                           | (1.6)         | 0.800 |
| % Change at End of Extension           | -5.7                                      | (1.3)         | 0.001 |
| TC/HDL-C Ratio                         |                                           |               |       |
| Baseline                               |                                           | (3.6, 5.6)    |       |
| % Change at End of Treatment           | -2.8                                      | (-7.4, 5.5)   | 0.800 |
| % Change at End of Extension           | -7.3                                      | (-14.3, -4.2) | 0.001 |
| Triglycerides, mg/dL                   |                                           |               |       |
| Baseline                               | 88.5                                      | (75.0, 163.0) |       |
| % Change at End of Treatment           | 2.3                                       | (-22.9, 18.6) | 0.677 |
| % Change at End of Extension           | -12.2                                     | (-19.5, 8.4)  | 0.251 |
| hs-CRP, mg/dL                          |                                           |               |       |
| Baseline                               | 2.3                                       | (0.8, 4.2)    |       |
| Change at End of Treatment             |                                           | (-1.1, 1.1)   | 0.800 |
| Change at End of Extension             |                                           | (-0.9, 0.7)   | 0.800 |
| Body Weight, kg                        |                                           | ( 2.3, 2.1)   |       |
| Baseline                               | 91 1                                      | (3.0)         |       |
| Change at End of Treatment             |                                           | (0.3)         | 0.082 |
| Change at End of Extension             |                                           | (0.3)         | 0.006 |
|                                        | 1.0                                       | (0.5)         | 0.000 |
| Systolic Blood Pressure, mm Hg         | 1157                                      | (1.0)         |       |
| Baseline Change at End of Treatment    |                                           | (1.9)         | 0.000 |
| Change at End of Treatment             |                                           | (1.1)         | 0.800 |
| Change at End of Extension             | -0.9                                      | (1.0)         | 0.715 |
| Diastolic Blood Pressure, mm Hg        | <b>=</b> :                                | ((0.1.75.1)   |       |
| Baseline                               |                                           | (68.1, 77.1)  | 2.022 |
| Change at End of Treatment             |                                           | (-2.0, 2.8)   | 0.800 |
| Change at End of Extension             | -0.7                                      | (-5.5, 3.4)   | 0.781 |
| Heart Rate, bpm                        |                                           |               |       |
| Baseline                               | 69.6                                      | (62.7, 74.2)  |       |
| Change at End of Treatment             | 2.3                                       | (-3.2, 5.1)   | 0.483 |
| Change at End of Extension             | 1.9                                       | (-2.2, 9.7)   | 0.164 |
| ~                                      |                                           | •             |       |

<sup>&</sup>lt;sup>1</sup> Baseline was defined as average of visits 1 and 2 (weeks –1 and 0); end of treatment was defined as average of visits 3 and 4 (weeks 7 and 8); end of extension was defined as an average of visits 5 and 6 (weeks 15 and 16). Change at End of Treatment = Change from Baseline to End of Treatment. Change at End of Extension = Change from Baseline to End of Extension.

**Table 4. Subjects with 25(0H)D levels ≥30 ng/mL.**<sup>1,2</sup>

|                  | MVM<br>n = 29 | MVM + D $n = 31$ | MVM + D Extension $n = 27$ | P-value |  |  |
|------------------|---------------|------------------|----------------------------|---------|--|--|
|                  | n (%)         |                  |                            |         |  |  |
| Baseline         | 9 (31.0%)     | 11 (35.5%)       | 9 (33.3%)                  | 0.720   |  |  |
| End of Treatment | 7 (24.1%)     | 12 (38.7%)       | 10 (37.0%)                 | 0.232   |  |  |
| End of Extension | NA            | NA               | 9 (33.3%)                  | 0.949   |  |  |

<sup>1</sup>NA = not applicable <sup>2</sup>All comparisons were p > 0.200.

IU = international units

#### Abbreviations:

25(OH)D = 25-hydroxyvitamin D

CHD = coronary heart disease

HDL-C = high-density lipoprotein cholesterol
hs-CRP = high sensitivity C-reactive protein

LDL-C = low-density lipoprotein cholesterol

MVM = multivitamin mineral supplement

MVM + D = multivitamin mineral supplement + vitamin D

SEM = standard error of the mean

TC = total cholesterol.

### **Conclusions**

- Although mean 25(OH)D levels increased from 25.8 ng/mL to 30.5 ng/mL, consuming a MVM supplement with 1200 IU/d of vitamin D for 8 weeks did not increase serum 25(OH)D concentrations to a desirable level in a majority of these predominantly overweight and obese participants, and did not significantly alter HDL-C or other markers of cardiovascular disease risk.
- Further research is warranted to assess the levels of supplemental vitamin D intakes required to raise 25(OH)D concentrations to sufficient levels in subjects with increased adiposity, which would be particularly relevant in the winter months when sun exposure is low.
- Preliminary evidence from the extension study suggests that adding low-dose probiotics and omega-3 fatty acids may favorably affect HDL-C and non-HDL-C concentrations.





This study was supported by Shaklee Corporation.

Variables with results shown as median (interquartile limits) were not normally distributed and statistical modeling was completed after rank transformation.

<sup>&</sup>lt;sup>2</sup> Treatment and Extension P-values were obtained from t-tests for changes different from zero. P-values are adjusted to correct for multiple comparisons.

<sup>&</sup>lt;sup>3</sup> Variables with results shown as median (interquartile limits) were not normally distributed and statistical modeling was completed after rank transformation.